Programmieren - Praktikum

Ingenieurinformatik Teil 1, Wintersemester 2025/26

David Straub

Sicherheitsunterweisung fiir Benutzer der des Verbundlabors KCA

e Fluchtwege von jedem Raum links und rechts auf den Flur in das Treppenhaus

e an der Flurdecke sind griine beleuchtete Hinweisschilder als Fluchtwegmarkierung
angebracht

e die FeuerlGscher befinden sich im Flur und sind mit roten Hinweisschildern an den
Seitenwinden gekennzeichnet

¢ die Feuermelder befinden sich in beiden Treppenhéusern

o im Brandfall keinen Aufzug beniitzen; Begriindung: moglicher Stromausfall

o im Brandfall die Fenster geschlossen halten

o wichtige Informationen sind im Raum ausgehingt: Raumnutzungsordnung, ...

¢ Not-Aus-Schalter sind in allen Radumen vorhanden

Gliederung

e Termin 1

e Termin 2

Programmieren/Praktikum — D. Straub

e Termin 3
e Termin 4
e Termin 5

e Termin 6

Programmieren/Praktikum — D. Straub

Termin 1

Termin 1

Datentypen

o int (Integer, Ganzzahlen): 1, 42, -7

o float (Gleitkommazahlen): 3.14, -0.001, 2.0
o str (String, Zeichenkette): "Hallo", 'a', "123"

» bool (Boolean, Wahrheitswert): True, False

Typumwandlung

Eingabe ist immer ein String

alter_str = input("wie alt bist du? ")

print(alter_str + 1) # Fehler! # String + Integer geht nicht

alter = int(alter_str) # Umwandlung in Integer

print(alter + 1) # Jetzt geht's

Operatoren

o Arithmetische Operatoren: +, -, *, /, // (Ganzzahldivision), % (Modulo), **

(Exponentiation)
e Vergleichsoperatoren: ==, = <, > <=

e Logische Operatoren: and, or, not

Die input-Funktion

name = input("Wie ist dein Name? ")

print("Hallo " + name)

f-Strings
name = "Alice"
alter = 30

print(f"Hallo {name}, du bist {alter} Jahre alt.")

Programmieren/Praktikum — D. Straub Termin 1

Verzweigungen

temperatur = float(input("Wie ist die Temperatur drauBen? (in °C): "))
if temperatur < 0:
print("Kalt - Winterjacke anziehen!")
elif temperatur <= 20:
print("Mild - Pullover reicht")
else:
print("warm - T-Shirt-Wetter!")

Aufgabe 1: imperiale Einheiten

Schreiben Sie ein Programm, mit dem die in der Luftfahrt verbreiteten imperialen Einheiten Fuf,

Seemeilen und Knoten in das metrische System (Meter, m/s) umgerechnet werden konnen.

Das Programm soll zundchst Fragen, welche der drei Einheiten umgerechnet werden soll.
Anschlielend soll der Wert der Einheit abgefragt werden, der umgerechnet werden soll. Das

Programm soll dann den umgerechneten Wert ausgeben.
Umrechnungswerte

e 1ft=0.3048m
e 1NM = 1852 m
e 1kn=1NM/h

Aufgabe 2: Schwebedauer

Ein Multicopter benétigt im Schwebeflug eine Leistung von

T3/2

v/ 2pA

k: dimensionlose Effizienz < 1, T = mg: Schubkraft, p: Luftdichte, A = nmr?: Rotorfliche

P=k

k
g= 9’815227 PMiinchen ~ 172;%

Der Multicopter hat einen Akku mit der Kapazitiat 3 Ah und einer durchschnittlichen Spannung
von 11.1 V.

Programmieren/Praktikum — D. Straub Termin 1

Schreiben Sie ein Programm, das die Schwebedauer des Multicopters in Abhéngigkeit von der

Masse m, der Anzahl n und dem Durchmesser 2r der Rotoren berechnet. Nehmen sie x = 0,5 an.

Image Missing

Programmieren/Praktikum — D. Straub Termin 2

Termin 2

Aufgabe: Gleitstreckenberechnung

e Schreiben Sie eine Funktion, die die maximale Gleitstrecke eines Segelflugzeugs berechnet.
Die Funktion soll die Starthéhe in Metern, den Hohenverlust pro Kilometer Flugstrecke in
Metern und die notige Hohenreserve in Metern als Eingabeparameter erhalten und die
maximale Gleitstrecke in Kilometern zuriickgeben.

e Verwenden Sie eine separate Funktion zur Ausgabe der Gleitstrecke in einem lesbaren
Format (z.B. “Die maximale Gleitstrecke betragt X km”) inklusive sinnvoller Rundung.

¢ Schreiben Sie eine Hauptfunktion main(), die den Benutzer nach der Starthohe, dem

Hohenverlust und der Hohenreserve fragt, die Funktionen aufruft und die Gleitstrecke

ausgibt.

Zusatzaufgabe: Test-Skript

e Schreiben Sie ein Test-Skript, das die Funktion zur Berechnung der Gleitstrecke mit
verschiedenen Eingabewerten aufruft und die Ergebnisse {iberpriift.
e Verwenden Sie das assert-Statement, um sicherzustellen, dass die berechneten

Gleitstrecken den erwarteten Werten entsprechen.

Beispiel:

def test_negative_starthoehe():

assert berechne_gleitstrecke(-1, 1, 1) == 0

Programmieren/Praktikum — D. Straub Termin 2

Zusatzaufgabe: Gleitwinkel

e Erweitern Sie die Funktion zur Berechnung der Gleitstrecke, um zusétzlich den Gleitwinkel
in Grad zu berechnen und zuriickzugeben.
« Der Gleitwinkel 6 kann mit der Formel tan(f) = Eohemerlust herechpet werden.
gstrecke
o Passen Sie die Ausgabe-Funktion an, um auch den Gleitwinkel auszugeben.

Programmieren/Praktikum — D. Straub Termin 3

Termin 3

Aufgabe: Primzahlbestimmung Teil 1

Schreiben Sie eine Funktion ist_prim, die Gberpriift, ob eine Zahl eine Primzahl ist. Die

Funktion soll True zuriickgeben, wenn die Zahl eine Primzahl ist, und False, wenn nicht.
Hinweise:

e Eine Primzahl ist eine natiirliche Zahl grofler als 1, die nur durch 1 und sich selbst teilbar ist.

e Verwenden Sie eine Schleife, um die Teilbarkeit der Zahl durch alle Zahlen ab 2 zu
iiberpriifen

« Uberlegen Sie sich, warum es ausreichen wiirde, nur bis zur Quadratwurzel der Zahl zu
priifen

o Fir die Teilbarkeit kann der Modulo-Operator % verwendet werden

o Schreiben Sie eine Testfunktion, die die Korrektheit Ihrer Primzahl-Funktion tiberpriift (z.B.
dass sie True fiir 2, 3, 5, 7 und False fiir 1, 4, 6, 8, 9 zuriickgibt).

Primzahlbestimmung Teil 2

Schreiben Sie eine Funktion, die alle Primzahlen bis zu einer gegebenen Zahl n findet und in einer

Liste zuriickgibt.
Hinweise:

e Verwenden Sie Thre Primzahl-Funktion aus Teil 1, um zu iiberpriifen, ob jede Zahl bis n eine

Primzahl ist.

Primzahlbestimmung: Zusatzaufgaben

e Summe der Primzahlen: Schreiben Sie eine Funktion, die die Summe aller Primzahlen bis n

berechnet. Beispiel: Firn =10 -2+ 3+ 5+ 7 = 17.

e Primzahldifferenzen: Erstellen Sie eine Liste mit den Absténden zwischen
aufeinanderfolgenden Primzahlen bis n. Beispiel: Zwischen 2, 3, 5, 7 — Differenzen: [1, 2,

2].

o Primzahlzwillinge: Finden Sie alle Primzahlzwillinge (Paare von Primzahlen, die genau 2
auseinanderliegen, z. B. (3,5), (5,7), (11,13)) bis n.

Programmieren/Praktikum — D. Straub Termin 4

Termin 4

Wiirfelspiel-Simulator

In dieser Aufgabe programmieren Sie einen Simulator fiir ein Wiirfelspiel und analysieren

verschiedene Strategien.

Das Spiel ,,Pig“ oder ,,Bose Eins‘“: - Ein Spieler wiirfelt mehrmals hintereinander - Nach
jedem Wurf werden die Augen zur Rundenpunktzahl addiert - Der Spieler kann jederzeit authéren
und die Punkte “sichern” - Aber: Bei einer 1 verliert man alle Punkte der aktuellen Runde! -

Wer zuerst 100 Punkte erreicht, gewinnt

Ihre Aufgabe: Testen Sie verschiedene Strategien durch Simulation!

Wiirfelspiel-Simulator (Teil 1)

Teil 1: Grundfunktionen

Schreiben Sie folgende Funktionen:

a) wuerfle(): - Gibt eine Zufallszahl zwischen 1 und 6 zuriick - Verwenden Sie die passende

Funktion aus dem Modul random

b) spiele_runde(anzahl_wuerfe): - Wiirfelt anzah1l_wuerfe mal und speichert alle Wiirfe in
einer Liste - Wenn eine 1 dabei ist: gibt 0 zuriick - Sonst: gibt die Summe aller Wiirfe zuriick -

Gibt auflerdem die Liste der Wiirfe zuriick (Riickgabe eines Tupels aus Zahl und Liste)

Testen Sie beide Funktionen mit random. seed fiir reproduzierbare Ergebnisse.

Wiirfelspiel-Simulator (Teil 2)

Teil 2: Strategien implementieren

Programmieren/Praktikum — D. Straub Termin 4

Eine Strategie legt fest, wie oft man maximal wiirfelt, bevor man aufhort.

Schreiben Sie eine Funktion spiele_strategie(max_wuerfe, ziel_punkte): - max_wuerfe:
Anzahl Wiirfe pro Runde (die “Strategie”) - ziel_punkte: Punkte, die zum Gewinnen nétig sind
(z.B. 100) - Die Funktion spielt das Spiel bis zum Erreichen der Zielpunkte: - Speichert die
Gesamtpunktzahl in Variable gesamt, zahlt Runden in runden - Ruft in jeder Runde
spiele_runde(max_wuerfe) auf - Addiert die Rundenpunkte zu gesamt - Gibt zuriick: Anzahl

der bendétigten Runden

Testen Sie mit max_wuerfe=3 und ziel_punkte=100.

Wiirfelspiel-Simulator (Teil 2, Fortsetzung)

Erstellen Sie ein Struktogramm fiir die Funktion spiele_strategie.

Wiirfelspiel-Simulator (Teil 3)
Teil 3: Mehrfache Simulation

Schreiben Sie eine Funktion simuliere_strategie(max_wuerfe, ziel_punkte,
anzahl_spiele): - Spielt das Spiel anzahl_spiele mal - Speichert die Anzahl benotigter
Runden in einer Liste - Verwendet random.seed(i) vor jedem Spiel (mit i als Schleifenvariable)

- Gibt die Liste aller Rundenanzahlen zurtick

Fiihren Sie durch: - Simulieren Sie 1000 Spiele fiir die Strategien “2 Wiirfe”, “3 Wiirfe”, “4
Wiirfe” und “5 Wiirfe” - Speichern Sie die Ergebnisse in verschiedenen Variablen #+##
Wiirfelspiel-Simulator (Teil 4)

Teil 4: Statistische Auswertung

Schreiben Sie eine Funktion analysiere_strategie(runden_liste, strategie_name): -
Berechnet aus der Liste die folgenden Werte: - Durchschnittliche Anzahl Runden (Mittelwert) -
Minimale Anzahl Runden - Maximale Anzahl Runden - Standardabweichung:

o= \/% Z?Zl(xi — z)? - Verwenden Sie math.sqrt() fiir die Wurzel

Wiirfelspiel-Simulator (Teil 4, Fortsetzung)

Die Funktion analysiere_strategie gibt die Ergebnisse formatiert aus:

Strategie: [strategie_name]

10

Programmieren/Praktikum — D. Straub Termin 4

Durchschnitt: X.X Runden
Min: X Runden, Max: X Runden

Standardabweichung: X.X

Analysieren Sie alle vier Strategien. Welche ist am effizientesten?

Wiirfelspiel-Simulator: Zusatzaufgaben

Zusatz 1: Optimale Strategie finden

Schreiben Sie eine Schleife, die alle Strategien von 1 bis 10 Wiirfen testet (jeweils 1000 Spiele) und
die durchschnittliche Rundenanzahl in einer Liste speichert. Finden Sie die optimale Strategie

(kleinste durchschnittliche Rundenanzahl).
Zusatz 2: Risiko-Analyse

Berechnen Sie fiir jede Strategie: Wie oft (in Prozent) wird in einer Runde eine 1 gewiirfelt und
damit die Runde verloren? Verwenden Sie dafiir die Wahrscheinlichkeitsrechnung;:
P(keine 1) = (5/6)™

Zusatz 3: Detaillierte Ausgabe

Erweitern Sie spiele_runde() so, dass bei gesetztem optionalen Parameter debug=True jeder

einzelne Wurf ausgegeben wird, z.B.: “Wurf 1: 4, Wurf 2: 6, Wurf 3: 1 — Runde verloren!”

11

Programmieren/Praktikum — D. Straub Termin 5

Termin5

Aufgabe: Visualisierung von WechselstromgroBen

Visualisieren Sie den zeitlichen Verlauf von Spannung und Strom an verschiedenen

Wechselstromwiderstdnden.
Formeln: - Spannung: u(t) = U, sin(wt) - Strom: i(t) = I, sin(wt + ¢)
Konstanten: Uy =325V, [, =23 A, f =50 Hz, w =27 f

Importieren Sie matplotlib.pyplot und math.

Visualisierung Teil 1: Daten vorbereiten
a) Definieren Sie die Konstanten Uy, I, f und w.

b) Schreiben Sie zwei Funktionen spannung(t) und strom(t, phi), die die Formeln fiir u(t)

und ¢(¢) implementieren und jeweils einen Wert zuriickgeben.

c) Erstellen Sie mit einer List Comprehension eine Liste t_werte mit 200 Intervallen von 0 bis
0.04 s (zwei Perioden).

Hinweis: Formel fiir den i-ten Zeitpunkt: ¢, =1 - % fir ¢ =0,1,...,200

Visualisierung Teil 2: Ohmscher Widerstand
Erstellen Sie einen Plot fiir den ohmschen Widerstand (¢ = 0):

a) Berechnen Sie u_werte und i_werte mit List Comprehensions, die Thre Funktionen

aufrufen.

b) Plotten Sie beide Kurven in einem Diagramm: - Spannung: rote durchgezogene Linie - Strom:

blaue gestrichelte Linie
c) Fugen Sie hinzu: Gitter, Achsenbeschriftungen, Titel

d) Zeigen Sie den Plot an oder speichern Sie ihn.

12

Programmieren/Praktikum — D. Straub Termin 5

Visualisierung Teil 3: Spule
Erstellen Sie einen Plot fiir eine Spule (¢ = —7/2):
a) Berechnen Sie u_werte und i_werte mit den Funktionen und der neuen Phasenverschiebung.

b) Plotten Sie beide Kurven: - Spannung: rote durchgezogene Linie - Strom: griine gepunktete

Linie
c) Markieren Sie den Punkt bei t = 0,005 s auf der Spannungskurve mit einem roten Kreis.

d) Fiigen Sie Gitter, Beschriftungen und Titel hinzu.

Visualisierung Teil 4: Kondensator
Erstellen Sie einen Plot fiir einen Kondensator (¢ = +7/2):
a) Berechnen Sie u_werte und i_werte mit den Funktionen und der neuen Phasenverschiebung.

b) Plotten Sie beide Kurven: - Spannung: rote durchgezogene Linie - Strom: orange

durchgezogene Linie
¢) Markieren Sie den Punkt bei t = 0,010 s auf der Stromkurve mit einem schwarzen Quadrat.

d) Fiigen Sie Gitter, Beschriftungen und Titel hinzu.

Visualisierung: Zusatzaufgaben

Zusatz 1: Erstellen Sie eine Figur mit drei Subplots (1 Zeile, 3 Spalten), die alle drei Falle

nebeneinander zeigt. Verwenden Sie plt.subplot() (— Dokumentation).

Zusatz 2: Fiigen Sie den einzelnen Plots Legenden hinzu. Verwenden Sie plt.legend() (—

Dokumentation).

Zusatz 2: Die Momentanleistung ist p(t) = u(t) - i(t). Berechnen Sie und visualisieren Sie die

Leistung fiir alle drei Félle in separaten Plots. Was fallt bei der Spule und beim Kondensator auf?

Zusatz 3: Schreiben Sie eine Funktion plot_phasenverschiebung(phi_grad), die Spannung
und Strom fiir eine beliebige Phasenverschiebung in Grad plottet. Testen Sie mit verschiedenen

Werten.

13

https://matplotlib.org/stable/gallery/pyplots/pyplot_two_subplots.html#sphx-glr-gallery-pyplots-pyplot-two-subplots-py
https://matplotlib.org/stable/users/explain/axes/legend_guide.html
https://matplotlib.org/stable/users/explain/axes/legend_guide.html

Programmieren/Praktikum — D. Straub Termin 6

Termin 6

Advent of Code

Advent of Code ist ein Programmierwettbewerb mit tdglichen Rétseln vom 1. bis 25. Dezember.
Aufgabe: Losen Sie Day 1 in Python und zeigen Sie mir Ihren Code.

Regeln:

+ Keine KI-Tools (ChatGPT, Copilot, etc.)

e Dokumentation, Google, gegenseitige Hilfe erlaubt
Sie brauchen einen Account auf adventofcode.com (Login mit GitHub, Google, etc.)

Wenn Sie fertig sind: Machen Sie mit Tag 2, 3, ... so weit wie Sie kommen!

14

https://adventofcode.com/2025/day/1
https://adventofcode.com/

	Sicherheitsunterweisung für Benutzer der des Verbundlabors KCA
	Gliederung
	Termin 1
	Datentypen
	Typumwandlung
	Operatoren
	Die input-Funktion
	f-Strings
	Verzweigungen
	Aufgabe 1: imperiale Einheiten
	Aufgabe 2: Schwebedauer

	Termin 2
	Aufgabe: Gleitstreckenberechnung
	Zusatzaufgabe: Test-Skript
	Zusatzaufgabe: Gleitwinkel

	Termin 3
	Aufgabe: Primzahlbestimmung Teil 1
	Primzahlbestimmung Teil 2
	Primzahlbestimmung: Zusatzaufgaben

	Termin 4
	Würfelspiel-Simulator
	Würfelspiel-Simulator (Teil 2)
	Würfelspiel-Simulator (Teil 2, Fortsetzung)
	Würfelspiel-Simulator (Teil 3)
	Würfelspiel-Simulator (Teil 4, Fortsetzung)
	Würfelspiel-Simulator: Zusatzaufgaben

	Termin 5
	Aufgabe: Visualisierung von Wechselstromgrößen
	Visualisierung Teil 1: Daten vorbereiten
	Visualisierung Teil 2: Ohmscher Widerstand
	Visualisierung Teil 3: Spule
	Visualisierung Teil 4: Kondensator
	Visualisierung: Zusatzaufgaben

	Termin 6
	🎄 Advent of Code

