
Programmieren – Praktikum

Ingenieurinformatik Teil 1, Wintersemester 2025/26

David Straub

Sicherheitsunterweisung für Benutzer der des Verbundlabors KCA

• Fluchtwege von jedem Raum links und rechts auf den Flur in das Treppenhaus
• an der Flurdecke sind grüne beleuchtete Hinweisschilder als Fluchtwegmarkierung

angebracht
• die Feuerlöscher befinden sich im Flur und sind mit roten Hinweisschildern an den

Seitenwänden gekennzeichnet
• die Feuermelder befinden sich in beiden Treppenhäusern
• im Brandfall keinen Aufzug benützen; Begründung: möglicher Stromausfall
• im Brandfall die Fenster geschlossen halten
• wichtige Informationen sind im Raum ausgehängt: Raumnutzungsordnung, …
• Not-Aus-Schalter sind in allen Räumen vorhanden

Gliederung

• Termin 1
• Termin 2

Programmieren/Praktikum – D. Straub

• Termin 3
• Termin 4
• Termin 5
• Termin 6

2

Programmieren/Praktikum – D. Straub Termin 1

Termin 1

Datentypen

• int (Integer, Ganzzahlen): 1, 42, -7
• float (Gleitkommazahlen): 3.14, -0.001, 2.0
• str (String, Zeichenkette): "Hallo", 'a', "123"
• bool (Boolean, Wahrheitswert): True, False

Typumwandlung

Eingabe ist immer ein String
alter_str = input("Wie alt bist du? ")
print(alter_str + 1) # Fehler! # String + Integer geht nicht
alter = int(alter_str) # Umwandlung in Integer
print(alter + 1) # Jetzt geht's

Operatoren

• Arithmetische Operatoren: +, -, *, /, // (Ganzzahldivision), % (Modulo), **
(Exponentiation)

• Vergleichsoperatoren: ==, !=, <, >, <=, >=
• Logische Operatoren: and, or, not

Die input-Funktion

name = input("Wie ist dein Name? ")
print("Hallo " + name)

f-Strings

name = "Alice"
alter = 30
print(f"Hallo {name}, du bist {alter} Jahre alt.")

3

Programmieren/Praktikum – D. Straub Termin 1

Verzweigungen

temperatur = float(input("Wie ist die Temperatur draußen? (in °C): "))
if temperatur < 0:

print("Kalt - Winterjacke anziehen!")
elif temperatur <= 20:

print("Mild - Pullover reicht")
else:

print("Warm - T-Shirt-Wetter!")

Aufgabe 1: imperiale Einheiten

Schreiben Sie ein Programm, mit dem die in der Luftfahrt verbreiteten imperialen Einheiten Fuß,
Seemeilen und Knoten in das metrische System (Meter, m/s) umgerechnet werden können.

Das Programm soll zunächst Fragen, welche der drei Einheiten umgerechnet werden soll.
Anschließend soll der Wert der Einheit abgefragt werden, der umgerechnet werden soll. Das
Programm soll dann den umgerechneten Wert ausgeben.

Umrechnungswerte

• 1 ft = 0.3048 m
• 1 NM = 1852 m
• 1 kn = 1 NM/h

Aufgabe 2: Schwebedauer

Ein Multicopter benötigt im Schwebeflug eine Leistung von

𝑃 = 𝜅 𝑇 3/2

√2𝜌𝐴

𝜅: dimensionlose Effizienz < 1, 𝑇 = 𝑚𝑔: Schubkraft, 𝜌: Luftdichte, 𝐴 = 𝑛𝜋𝑟2: Rotorfläche

𝑔 = 9,81 m
s2 , 𝜌München ≈ 1,2 kg

m3

Der Multicopter hat einen Akku mit der Kapazität 3 Ah und einer durchschnittlichen Spannung
von 11.1 V.

4

Programmieren/Praktikum – D. Straub Termin 1

Schreiben Sie ein Programm, das die Schwebedauer des Multicopters in Abhängigkeit von der
Masse 𝑚, der Anzahl 𝑛 und dem Durchmesser 2𝑟 der Rotoren berechnet. Nehmen sie 𝜅 = 0,5 an.

Image Missing

5

Programmieren/Praktikum – D. Straub Termin 2

Termin 2

Aufgabe: Gleitstreckenberechnung

• Schreiben Sie eine Funktion, die die maximale Gleitstrecke eines Segelflugzeugs berechnet.
Die Funktion soll die Starthöhe in Metern, den Höhenverlust pro Kilometer Flugstrecke in
Metern und die nötige Höhenreserve in Metern als Eingabeparameter erhalten und die
maximale Gleitstrecke in Kilometern zurückgeben.

• Verwenden Sie eine separate Funktion zur Ausgabe der Gleitstrecke in einem lesbaren
Format (z.B. “Die maximale Gleitstrecke beträgt X km”) inklusive sinnvoller Rundung.

• Schreiben Sie eine Hauptfunktion main(), die den Benutzer nach der Starthöhe, dem
Höhenverlust und der Höhenreserve fragt, die Funktionen aufruft und die Gleitstrecke
ausgibt.

Zusatzaufgabe: Test-Skript

• Schreiben Sie ein Test-Skript, das die Funktion zur Berechnung der Gleitstrecke mit
verschiedenen Eingabewerten aufruft und die Ergebnisse überprüft.

• Verwenden Sie das assert-Statement, um sicherzustellen, dass die berechneten
Gleitstrecken den erwarteten Werten entsprechen.

Beispiel:

def test_negative_starthoehe():
assert berechne_gleitstrecke(-1, 1, 1) == 0

6

Programmieren/Praktikum – D. Straub Termin 2

Zusatzaufgabe: Gleitwinkel

• Erweitern Sie die Funktion zur Berechnung der Gleitstrecke, um zusätzlich den Gleitwinkel
in Grad zu berechnen und zurückzugeben.

• Der Gleitwinkel 𝜃 kann mit der Formel tan(𝜃) = Höhenverlust
Flugstrecke berechnet werden.

• Passen Sie die Ausgabe-Funktion an, um auch den Gleitwinkel auszugeben.

7

Programmieren/Praktikum – D. Straub Termin 3

Termin 3

Aufgabe: Primzahlbestimmung Teil 1

Schreiben Sie eine Funktion ist_prim, die überprüft, ob eine Zahl eine Primzahl ist. Die
Funktion soll True zurückgeben, wenn die Zahl eine Primzahl ist, und False, wenn nicht.

Hinweise:

• Eine Primzahl ist eine natürliche Zahl größer als 1, die nur durch 1 und sich selbst teilbar ist.
• Verwenden Sie eine Schleife, um die Teilbarkeit der Zahl durch alle Zahlen ab 2 zu

überprüfen
• Überlegen Sie sich, warum es ausreichen würde, nur bis zur Quadratwurzel der Zahl zu

prüfen
• Für die Teilbarkeit kann der Modulo-Operator % verwendet werden
• Schreiben Sie eine Testfunktion, die die Korrektheit Ihrer Primzahl-Funktion überprüft (z.B.

dass sie True für 2, 3, 5, 7 und False für 1, 4, 6, 8, 9 zurückgibt).

Primzahlbestimmung Teil 2

Schreiben Sie eine Funktion, die alle Primzahlen bis zu einer gegebenen Zahl n findet und in einer
Liste zurückgibt.

Hinweise:

• Verwenden Sie Ihre Primzahl-Funktion aus Teil 1, um zu überprüfen, ob jede Zahl bis n eine
Primzahl ist.

Primzahlbestimmung: Zusatzaufgaben

• Summe der Primzahlen: Schreiben Sie eine Funktion, die die Summe aller Primzahlen bis n
berechnet. Beispiel: Für n = 10 → 2 + 3 + 5 + 7 = 17.

• Primzahldifferenzen: Erstellen Sie eine Liste mit den Abständen zwischen
aufeinanderfolgenden Primzahlen bis n. Beispiel: Zwischen 2, 3, 5, 7 → Differenzen: [1, 2,
2].

• Primzahlzwillinge: Finden Sie alle Primzahlzwillinge (Paare von Primzahlen, die genau 2
auseinanderliegen, z. B. (3,5), (5,7), (11,13)) bis n.

8

Programmieren/Praktikum – D. Straub Termin 4

Termin 4

Würfelspiel-Simulator

In dieser Aufgabe programmieren Sie einen Simulator für ein Würfelspiel und analysieren
verschiedene Strategien.

Das Spiel „Pig“ oder „Böse Eins“: - Ein Spieler würfelt mehrmals hintereinander - Nach
jedem Wurf werden die Augen zur Rundenpunktzahl addiert - Der Spieler kann jederzeit aufhören
und die Punkte “sichern” - Aber: Bei einer 1 verliert man alle Punkte der aktuellen Runde! -
Wer zuerst 100 Punkte erreicht, gewinnt

Ihre Aufgabe: Testen Sie verschiedene Strategien durch Simulation!

Würfelspiel-Simulator (Teil 1)

Teil 1: Grundfunktionen

Schreiben Sie folgende Funktionen:

a) wuerfle(): - Gibt eine Zufallszahl zwischen 1 und 6 zurück - Verwenden Sie die passende
Funktion aus dem Modul random

b) spiele_runde(anzahl_wuerfe): - Würfelt anzahl_wuerfe mal und speichert alle Würfe in
einer Liste - Wenn eine 1 dabei ist: gibt 0 zurück - Sonst: gibt die Summe aller Würfe zurück -
Gibt außerdem die Liste der Würfe zurück (Rückgabe eines Tupels aus Zahl und Liste)

Testen Sie beide Funktionen mit random.seed für reproduzierbare Ergebnisse.

Würfelspiel-Simulator (Teil 2)

Teil 2: Strategien implementieren

9

Programmieren/Praktikum – D. Straub Termin 4

Eine Strategie legt fest, wie oft man maximal würfelt, bevor man aufhört.

Schreiben Sie eine Funktion spiele_strategie(max_wuerfe, ziel_punkte): - max_wuerfe:
Anzahl Würfe pro Runde (die “Strategie”) - ziel_punkte: Punkte, die zum Gewinnen nötig sind
(z.B. 100) - Die Funktion spielt das Spiel bis zum Erreichen der Zielpunkte: - Speichert die
Gesamtpunktzahl in Variable gesamt, zählt Runden in runden - Ruft in jeder Runde
spiele_runde(max_wuerfe) auf - Addiert die Rundenpunkte zu gesamt - Gibt zurück: Anzahl
der benötigten Runden

Testen Sie mit max_wuerfe=3 und ziel_punkte=100.

Würfelspiel-Simulator (Teil 2, Fortsetzung)

Erstellen Sie ein Struktogramm für die Funktion spiele_strategie.

Würfelspiel-Simulator (Teil 3)

Teil 3: Mehrfache Simulation

Schreiben Sie eine Funktion simuliere_strategie(max_wuerfe, ziel_punkte,
anzahl_spiele): - Spielt das Spiel anzahl_spiele mal - Speichert die Anzahl benötigter
Runden in einer Liste - Verwendet random.seed(i) vor jedem Spiel (mit i als Schleifenvariable)
- Gibt die Liste aller Rundenanzahlen zurück

Führen Sie durch: - Simulieren Sie 1000 Spiele für die Strategien “2 Würfe”, “3 Würfe”, “4
Würfe” und “5 Würfe” - Speichern Sie die Ergebnisse in verschiedenen Variablen ###
Würfelspiel-Simulator (Teil 4)

Teil 4: Statistische Auswertung

Schreiben Sie eine Funktion analysiere_strategie(runden_liste, strategie_name): -
Berechnet aus der Liste die folgenden Werte: - Durchschnittliche Anzahl Runden (Mittelwert) -
Minimale Anzahl Runden - Maximale Anzahl Runden - Standardabweichung:
𝜎 = √ 1

𝑛 ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2 - Verwenden Sie math.sqrt() für die Wurzel

Würfelspiel-Simulator (Teil 4, Fortsetzung)

Die Funktion analysiere_strategie gibt die Ergebnisse formatiert aus:

Strategie: [strategie_name]

10

Programmieren/Praktikum – D. Straub Termin 4

Durchschnitt: X.X Runden
Min: X Runden, Max: X Runden
Standardabweichung: X.X

Analysieren Sie alle vier Strategien. Welche ist am effizientesten?

Würfelspiel-Simulator: Zusatzaufgaben

Zusatz 1: Optimale Strategie finden

Schreiben Sie eine Schleife, die alle Strategien von 1 bis 10 Würfen testet (jeweils 1000 Spiele) und
die durchschnittliche Rundenanzahl in einer Liste speichert. Finden Sie die optimale Strategie
(kleinste durchschnittliche Rundenanzahl).

Zusatz 2: Risiko-Analyse

Berechnen Sie für jede Strategie: Wie oft (in Prozent) wird in einer Runde eine 1 gewürfelt und
damit die Runde verloren? Verwenden Sie dafür die Wahrscheinlichkeitsrechnung:
𝑃(keine 1) = (5/6)𝑛

Zusatz 3: Detaillierte Ausgabe

Erweitern Sie spiele_runde() so, dass bei gesetztem optionalen Parameter debug=True jeder
einzelne Wurf ausgegeben wird, z.B.: “Wurf 1: 4, Wurf 2: 6, Wurf 3: 1 → Runde verloren!”

11

Programmieren/Praktikum – D. Straub Termin 5

Termin 5

Aufgabe: Visualisierung von Wechselstromgrößen

Visualisieren Sie den zeitlichen Verlauf von Spannung und Strom an verschiedenen
Wechselstromwiderständen.

Formeln: - Spannung: 𝑢(𝑡) = 𝑈0 sin(𝜔𝑡) - Strom: 𝑖(𝑡) = 𝐼0 sin(𝜔𝑡 + 𝜑)

Konstanten: 𝑈0 = 325 V, 𝐼0 = 23 A, 𝑓 = 50 Hz, 𝜔 = 2𝜋𝑓

Importieren Sie matplotlib.pyplot und math.

Visualisierung Teil 1: Daten vorbereiten

a) Definieren Sie die Konstanten 𝑈0, 𝐼0, 𝑓 und 𝜔.

b) Schreiben Sie zwei Funktionen spannung(t) und strom(t, phi), die die Formeln für 𝑢(𝑡)
und 𝑖(𝑡) implementieren und jeweils einen Wert zurückgeben.

c) Erstellen Sie mit einer List Comprehension eine Liste t_werte mit 200 Intervallen von 0 bis
0.04 s (zwei Perioden).

Hinweis: Formel für den i-ten Zeitpunkt: 𝑡𝑖 = 𝑖 ⋅ 0,04
200 für 𝑖 = 0, 1, … , 200

Visualisierung Teil 2: Ohmscher Widerstand

Erstellen Sie einen Plot für den ohmschen Widerstand (𝜑 = 0):

a) Berechnen Sie u_werte und i_werte mit List Comprehensions, die Ihre Funktionen
aufrufen.

b) Plotten Sie beide Kurven in einem Diagramm: - Spannung: rote durchgezogene Linie - Strom:
blaue gestrichelte Linie

c) Fügen Sie hinzu: Gitter, Achsenbeschriftungen, Titel

d) Zeigen Sie den Plot an oder speichern Sie ihn.

12

Programmieren/Praktikum – D. Straub Termin 5

Visualisierung Teil 3: Spule

Erstellen Sie einen Plot für eine Spule (𝜑 = −𝜋/2):

a) Berechnen Sie u_werte und i_werte mit den Funktionen und der neuen Phasenverschiebung.

b) Plotten Sie beide Kurven: - Spannung: rote durchgezogene Linie - Strom: grüne gepunktete
Linie

c) Markieren Sie den Punkt bei 𝑡 = 0,005 s auf der Spannungskurve mit einem roten Kreis.

d) Fügen Sie Gitter, Beschriftungen und Titel hinzu.

Visualisierung Teil 4: Kondensator

Erstellen Sie einen Plot für einen Kondensator (𝜑 = +𝜋/2):

a) Berechnen Sie u_werte und i_werte mit den Funktionen und der neuen Phasenverschiebung.

b) Plotten Sie beide Kurven: - Spannung: rote durchgezogene Linie - Strom: orange
durchgezogene Linie

c) Markieren Sie den Punkt bei 𝑡 = 0,010 s auf der Stromkurve mit einem schwarzen Quadrat.

d) Fügen Sie Gitter, Beschriftungen und Titel hinzu.

Visualisierung: Zusatzaufgaben

Zusatz 1: Erstellen Sie eine Figur mit drei Subplots (1 Zeile, 3 Spalten), die alle drei Fälle
nebeneinander zeigt. Verwenden Sie plt.subplot() (→ Dokumentation).

Zusatz 2: Fügen Sie den einzelnen Plots Legenden hinzu. Verwenden Sie plt.legend() (→
Dokumentation).

Zusatz 2: Die Momentanleistung ist 𝑝(𝑡) = 𝑢(𝑡) ⋅ 𝑖(𝑡). Berechnen Sie und visualisieren Sie die
Leistung für alle drei Fälle in separaten Plots. Was fällt bei der Spule und beim Kondensator auf?

Zusatz 3: Schreiben Sie eine Funktion plot_phasenverschiebung(phi_grad), die Spannung
und Strom für eine beliebige Phasenverschiebung in Grad plottet. Testen Sie mit verschiedenen
Werten.

13

https://matplotlib.org/stable/gallery/pyplots/pyplot_two_subplots.html#sphx-glr-gallery-pyplots-pyplot-two-subplots-py
https://matplotlib.org/stable/users/explain/axes/legend_guide.html
https://matplotlib.org/stable/users/explain/axes/legend_guide.html

Programmieren/Praktikum – D. Straub Termin 6

Termin 6

� Advent of Code

Advent of Code ist ein Programmierwettbewerb mit täglichen Rätseln vom 1. bis 25. Dezember.

Aufgabe: Lösen Sie Day 1 in Python und zeigen Sie mir Ihren Code.

Regeln:

• � Keine KI-Tools (ChatGPT, Copilot, etc.)
• � Dokumentation, Google, gegenseitige Hilfe erlaubt

Sie brauchen einen Account auf adventofcode.com (Login mit GitHub, Google, etc.)

Wenn Sie fertig sind: Machen Sie mit Tag 2, 3, … so weit wie Sie kommen!

14

https://adventofcode.com/2025/day/1
https://adventofcode.com/

	Sicherheitsunterweisung für Benutzer der des Verbundlabors KCA
	Gliederung
	Termin 1
	Datentypen
	Typumwandlung
	Operatoren
	Die input-Funktion
	f-Strings
	Verzweigungen
	Aufgabe 1: imperiale Einheiten
	Aufgabe 2: Schwebedauer

	Termin 2
	Aufgabe: Gleitstreckenberechnung
	Zusatzaufgabe: Test-Skript
	Zusatzaufgabe: Gleitwinkel

	Termin 3
	Aufgabe: Primzahlbestimmung Teil 1
	Primzahlbestimmung Teil 2
	Primzahlbestimmung: Zusatzaufgaben

	Termin 4
	Würfelspiel-Simulator
	Würfelspiel-Simulator (Teil 2)
	Würfelspiel-Simulator (Teil 2, Fortsetzung)
	Würfelspiel-Simulator (Teil 3)
	Würfelspiel-Simulator (Teil 4, Fortsetzung)
	Würfelspiel-Simulator: Zusatzaufgaben

	Termin 5
	Aufgabe: Visualisierung von Wechselstromgrößen
	Visualisierung Teil 1: Daten vorbereiten
	Visualisierung Teil 2: Ohmscher Widerstand
	Visualisierung Teil 3: Spule
	Visualisierung Teil 4: Kondensator
	Visualisierung: Zusatzaufgaben

	Termin 6
	🎄 Advent of Code

